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It is proposed a method to check hypotheses about values of the variance and 

mean value of the linear function of the state vector by an ensemble of regression 
experiments in the multicollinearity conditions. The method is suggested to solve 
high-dimensionality problems arising upon testing complex technical systems. 

 
1. Introduction and problem formulation 

 
The main propositions of this paper are based on results of article [1], which 

describes a method for checking hypotheses about values of the variance and mean 
value of the goal characteristic of a static linear system by an ensemble of regression 
experiments. The method was successfully tested for small-dimensionality problems, 
but attempts to apply it to the performance control with a high-dimensionality vector 
(m > 20) wasn’t successful. For high-dimensionality problems there was need of 
some modifications and additions to the algorithm [1]. Necessary modifications are 
discussed below, and the results of testing the improved algorithm are presented. 

Let the observation equation in an ensemble of N regression experiments be as 
follows: 

y = Hx + η, 
where y is the observation vector of dimensionality n; x is the state vector of 
dimensionality m, m ≤ n; η is the noise vector with normal distribution and certain 
variance matrix D[η] = B > 0; H is the full-rank design matrix. We assume that the 
state vector has normal distribution with independent components, that is, D[x] = 
diag. Next boundary values of parameters are given: 

][ ixM  ≤ Mmax,i ,           (1) 

0 < Dmin,i ≤ D[xi] ≤ Dmax,i , mi ,1= .    (2) 

The goal characteristic is defined by the m1 first state components as 

L = ∑
=

1

1

m

i
ix .      (3) 

In the problem of variance checking, we have to construct, using a sample of 
vectors y of size N, a test for checking the zero hypothesis 
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against the alternative 
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i
ix  = DA > DTTT.     (5) 

The problem of checking the mean value has a similar formulation; the zero 
and alternative hypotheses are represented by expressions like (4) and (5). 

Regressors of the design matrix are known to be able to form groups. We 
introduce the family G• = {Gj, qj ,1= } of groups of numbers such that 

G1 ∩ Gj = ∅  if  i ≠ j;  U
q

j
jG

1=
 = {1, ... , m};  Gj ≠ ∅, 

Gj ⊂ {1, ... , m1}  or  Gj ⊂ {m1 + 1, ... , m},  qj ,1= , 

introduce a q-dimensional vector I whose components are selected from the set {1, 2, 
... , m} and ordered so that for some natural r 

Ij ≤ m1  if  j ≤ r  or  Ij > m1  if  r < j ≤ q,       (6) 

and denote by n
BE  the Euclidean space with the scalar product (a, b)B = aTB–1b. Let 

Ba ≡ 2/1),( Baa . The subscript i denotes the i-th column-vector of the matrix. 

 We assume that there exist the vector I and the family G• such that in n
BE  the 

vectors 
h∗i = H∗i – H∗I j  , mi ,1= ,  j  such that  i ∈ Gj ,          (7) 

are small in norm. In other words, for an appropriate choice of I and G• , the reduced 
matrix 

ο
H  = (H∗I1, H∗I2, ... , H∗Iq)       (8) 

defines the regressors’ “grouping centers”, so that regressors H∗i for i ∈ Gj are 
grouping in the neighborhood of the j-th center H∗I j. 
 

2. Essence of the method of reduction 
 

Since the methods for checking the variance and mean value of the goal 
characteristic are not essentially different, we confine our consideration to the method 
of checking the hypotheses about the values of variance D[L]. The main result of [1] 
consists in generating the permissible set of estimates IdⱠ  of the useful parameter 
(variance) which define the corresponding set {㰀I,v} of tests with the critical domain 

IdⱠ  > v, where the power-optimal test is sought. The estimates IdⱠ  are defined by 



every possible reduced design matrices 
ο
H ; are constructed using the reduced 

statistics 
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and have the analytical form 
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where jkzⱠ  is the k-th sampled value of the j-th component of the vector zⱠ . Since the 

estimates IdⱠ  were introduced as the result of computer calculations, they differ from 

Id ′Ⱡ  owing to calculation errors. 
To calculate the power criterion of test 㰀I,v, the following guaranteed 

characteristics of the estimate IdⱠ  are given: 

       )(0
max IM  = 

2,4-1
max  M[ $d I ];    )(min IM A  = 

2,5-1
min  M[ $d I ]; 

          )(0
max ID  =  

2,4-1
max  D[ $d I ];    )(max ID A  = 

2,5-1
max  D[ $d I ];     

(11)
 

where indices under “max” and “min” point to the numbers of the conditions for 
which the extremum is sought. For the given level of significance 㬐 ≤ 1/2, 
expressions for the guaranteed strength of test 㰀I,v and strength-optimal tolerance 
boundary v(I) are expressed as follows: 
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v(I) ≡  )(0
max IM  – Φ–1(α) )(0

max ID , 

where 㩠 is the function of standard normal distribution and 㩠−1 is its inverse 
function. As was indicated in [1], function (12) has the sense of guaranteed power 
only if )(Iαβ  ≥ 1/2, that must be taken into account when applying the local 
optimization algorithms (see below). 
According to [1, 2], by the reduction of the multicollinear observation model we 
name the procedure to solve the statistical problem using the reduced statistics (9) 

and stepwise determination of the reduced design matrix 
ο
H , which is optimal in 

some criterion. We shell consider the method of reduction as means to solve fairly 
different problems [1, 2]. 

Let us introduce a q-dimensional vector οx  of group components of the system 
state vector: 



jxο  = ∑
∈ jGi

ix ,  qj ,1= .           (13) 

The following theorem establishes the possibility of estimating the vector of group 
components using the reduced statistics. 

Theorem. Convergence in probability zⱠ  →P  οx  takes place for 

0→∗ Bih ,  mi ,1=  and 0→EB .            (14) 

Proof. Denote by 
ο
H  the linear vector shell constructed on the regressors of the 

matrix 
ο
H . Represent vectors (7) as the orthogonal resolutions in n

BE : 
⊥
∗


∗∗ += iii hhh   where 

∗ih  ∈ 
ο
H , 0),( =⊥

∗ Bi ah  for any a ∈ 
ο
H . 

Carrying out development as in [1, sec. 2], we readily obtain: 

∆ zⱠ  ≡ zⱠ  − οx  = Rx + ηδⱠ ,     (15) 
where 
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ηδⱠ  = η−Το−ο
11

BHF . 

Since 
Bih∗ )(2/1

max Bλ  ≥ 
Bih

∗ )(2/1
max Bλ  ≥ 

Eih
∗ , where 㮰max(·) is the maximal 

eigenvalue of the matrix, convergence R → 0 exists under conditions (14). Since      

D[ ηδⱠ ] = 
1−ο

F  → 0  and  M[ ηδⱠ ] = 0  under the same conditions, we establish validity 
of the theorem. 
 To interpret (15), we could note that the error of estimating the vector of group 
components depends on two factors: the error ηδⱠ  of the LSM-estimate obtained by 

the reduced model of the form  y ≈ 
ο
H οx  + 㭰  and the error Rx caused by inadequacy 

of the model. The latter error depends only on the components xi eliminated from the 
reduced model. Indeed, ih∗  = 0 for i ∈ I, and consequently, 

Rx = ∑
∉

∗
Ii

ii xR .       (17) 

Therefore, when generating the reduced design matrix by selecting the regressor 
grouping centers in sufficiently low noise, the group components of state can be 
estimated by reduced statistics. This affirmation warrants the method of reduction as 
the mean for solving a wide class of statistical problems [3]. In the problems of 
checking the variance D[L], for example, estimate (10) can be obtained from 



D[L] = ∑
=
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j
jx

1
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where the true variances in the right-hand side are replaced by close sampled 

variances of jz€  ≈ jxο . The problem of estimating the goal characteristic (3) by a 
single experiment under multicollinearity was solved in [2] by reducing the model. 
The estimate proposed in [2] is obtained from the above statement by summing the 

components jz€ , rj ,1= . Additionally, closeness of the statistics z€ to the vector οx  
was used in the optimality studies of the solutions obtained in [1, 2]. 
 

3. Comparison of the stepwise schemes 
of regressor selection 

 
The regressor selection algorithm used in the present paper to solve the problem of 
checking the variance D[L] was elaborated and successfully approved for the problem 
of estimating the goal characteristic L by a single experiment [2]. Its application to 
optimizing the test 㰀I,v(I) by the power criterion (12) cannot be stated successful 
because solution was possible only for small dimensionality (m ≈ 5). To make the 
computational scheme applicable to larger dimensionalities of the problem, we shall 
analyze the existing stepwise schemes of regressor selection [4]. Consideration is 
given to the class of problems where the criterion function is the generalized measure 
of the error of reduced estimation ∆ z€. 

Algorithm of successive elimination generates the reduced design matrix by 
stepwise elimination of regressors from the original matrix. To make it reliable, one 
needs reliable calculations of the selection criterion for a large number q of regressors 

retained in 
ο
H . The optimization criterion of problem (12) does not meet this 

requirement: attempts to calculate this criterion for q ≈ m result in a abend of the 
program because of attempts to divide by zero upon matrix inversion. Nevertheless, 
the scheme proved operable for a similar problem using the regressor grouping 
criteria of the cluster analysis [5]. 

In the algorithm of successive attachment the dimensionality of the reduced 
design matrix successively increases beginning from q = 1. At the first step, a single 

regressor making up the matrix 
ο
H  is chosen in the optimal manner. According to 

(15)—(17), at the first step the chosen regressor is averaged over the entire orbit such 
that the majority of the vectors h∗i is small in norm. This regressor has, if possible, the 
number of the dominating component xi to decrease the estimation error according to 
(17). Figure 1 depicts an example of grouping the regressors of the original design 
matrix (projected on the plane). If the components xi are sufficiently small for i ∈ G3, 

then 1∗

ο
H , which is the “intermediate” regressor between the groups G1 and G2, is the 

anticipated result of the first step of the scheme. Since the estimation error ∆ z€ is 
affected substantially by the components xi eliminated from the reduced model, at the 



first steps of the algorithm (when q = 1, 2) the errors ∆ jz€  have to be comparatively 
great for a large dimensionality (m > 20) of the problem. So, at the beginning of the 
run, one can get αβ  < 1/2, that is, criterion (12) is no more the generalized measure 
of the estimation error ∆ z€ and its local optimal value is far from the optimal value. 
At the same time, in testing problems of small-dimensionality (m ≈ 5), even the first 
step of the attachment algorithm can provide a satisfactory result, if only αβ  ≥ 1/2 is 
attained. 

Algorithm of attachment-elimination needs the initial reduced matrix 
ο
H  = 

init
ο
H  from which the stepwise optimization is under way by attempts (i) to attach a 

regressor to the matrix 
ο
H ; (ii) eliminate a regressor from the matrix 

ο
H ; and (iii) 

replace pairwise the attached regressor by the eliminated one. This scheme gains an 
advantage over the last algorithm in possible replacing of unsuccessfully chosen 

regressors in 
ο
H , but for great m it is substantially slower. 

 
4. Combined stepwise algorithm 
and the possibility to improve it 

 

It was proposed in [1, 2] to construct the local optimal matrix 
ο
H  using the 

combined stepwise algorithm of successive attachment with an attempt of pairwise 
replacement of the attached regressors after the current attachment step. This scheme 
permits to correct the consequences of unsuccessful initial attachment steps, but 

Fig.1. Example of regressor grouping: Gj — groups of close 

regressors; H∗I j  — centers of grouping; 1∗

ο
H — first 

attached regressor 
 



because of the nonphysical nature of criterion (12) the possibility of unsatisfactory 
solution remains. Further we shall describe the algorithm in formal terms and ground 
its improvements for high-dimensionality problems of checking the variance D[L]. 
To describe the algorithm, we consider the set {I} of all possible integer vectors 
introduced above by inequalities (6) for the given characteristics of dimensionalities 
m1 and m. 

Definition 1. By the neighborhood of the vector I 0 on the subset G of the 
feasible set {I} is named the set of vectors I ∈ G such that the sets of values of the 
components of the vectors I and I 0 differ at most in one element. 

If the subset G ⊂ {I} consists of all feasible vectors of the given dimensionality 
q, then the corresponding neighborhood will be denoted by Oq(I 0). Here it is possible 
that dim I 0 ≠ q and, correspondingly, I 0 ∉ Oq(I 0). 

Definition 2. By the extended neighborhood of the vector I ∈ {I} is named the 
set O (I) = Ok(I) ∪ Ok+1(I), k = dim I. 

The next algorithm is valid to establish the local optimal solution of the 
problem of minimization of some criterion function Q(I) over an extended 
neighborhood O (I). To solve the problem under consideration, one must assume that 
Q = − )(Iαβ . 

 
Algorithm 1 

 
1. Step 1: 

1.1. The one-dimensional vector I 1  = i1 such that Q(i1) = min Q(i) in mi ,1=  is 
determined by overselection the numbers mi ,1= . 

1.2. If m = 1 then go to step 4. 
2. Set q = 1. 
3. (q + 1)-th step: 

3.1. The vector I′ such that Q(I′) = min Q(I) in I ∈ Oq+1(Iq) is determined by 
total overselection in the neighborhood Oq+1(Iq). 

3.2. The (q + 1)-dimensional vector I″, giving local minimum over the 
neighborhood Oq+1(⋅), is determined for the initial vector of search 0

)1( +qI  = I′ (see 
Algorithm 2). 

3.3. If Q(Iq) < Q(I″ )  then go to step 4. 
3.4. Set I q+1 = I″  and then set q = q + 1. 
3.5. If q = m then go to step 4, otherwise, go to step 3. 

4. End: the local minimum of the criterion function over the extended neighborhood 
O (⋅) is determined at the point Iq. 
 

In this algorithm, step 3.2 consists in local optimization on the set of vectors I 
of the given dimensionality dim I = q + 1. This problem is solved by the following 
procedure. 

 



Algorithm 2 
 

1. Set i = 0. 
2. (i + 1)-th step: 

2.1. Checking the point i
qI )1( +  for local minimum. By overselection the vectors 

of the neighborhood Oq+1( i
qI )1( + ) it is sought any vector I″ for which Q(I″ )  < 

Q( i
qI )1( + ). If there is no such point, go to step 3. 

2.2. Set 1
)1(

+
+

i
qI  = I″  and then i = i + 1. 

2.3. Go to step 2. 
3. Set I″ = i

qI )1( + . End: the local minimum on the set of (q + 1)-dimensional vectors I 
over the neighborhood Oq+1(⋅) is determined at the point I″. 
 

Let us consider the necessary modifications and improvements of the above 
algorithm for solving the high-dimensionality problems of checking the variance of 
the goal characteristic. 

First modification of the algorithm concerns of the power criterion (12). Let’s 
write out the problem of its maximization in the equivalent form: 

)(

)()()()(

max

0
max

10
maxmin

ID

IDIMIM
A

A αΦ−− −

 → 
I

max     (18) 

It proves to be that the stepwise maximization of the last criterion by Algorithm 1 can 
result in an unacceptable solution in the presence of a satisfactory solution (high-
power test). 

On the normal execution of the reduction algorithm, in the course of regressor 
attachment the reduced statistics (9) estimates more and more group components of 
the state vector (13) and the errors of estimation decrease with each step so that the 
error of estimation of variance (10) decreases as well. Let some neighborhood of the 
vector I be considered at an early stage of attachment, when the accuracy of the 
estimate d ′Ⱡ  is low. Let it be established that in this neighborhood the numerator in 
(18) is negative for all estimates of the variance. Then it would have been chosen a 
solution with the maximal variance )(max ID A , for which (18) is most close to zero 

(maximal), i.e. the matrix 
ο
H  retains its multicollinearity! Additionally, it happened 

once in trial calculations that from the possible estimates IdⱠ  a close-to-zero estimate 
was chosen for which the numerator in (18) was sufficiently small. Anyhow, at the 
beginning of optimization an unsuccessful solution was chosen, thus aggravating the 
final result. 

The negative numerator in (18) can be resulted of low accuracy of the 
estimates IdⱠ  if AM min  < 0

maxM  for all vectors I of the neighborhood, but in the 
presence of estimates of high accuracy, the numerator will be inevitably negative for 



a sufficiently low level of significance α (because |㩠−1(α)| → +∞ for α → +0). If in 
the neighborhood under study there was at least one solution with a positive criterion 
(18), then it would be chosen and process continued by the normal selection of 
regressors, but usually the initial step of optimization (where q = 1, 2) has no such 
solutions. The cause of this “computational catastrophe” is that the function )(Iαβ  in 
(12) is the test power only if )(Iαβ  ≥ 1/2, i.e. if the numerator in (18) is nonnegative. 
We propose the following corrected minimization criterion guaranteeing normal 
selection of the regressors for large-scale models: 
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where the guaranteed characteristics (11) are parameterized by the integer vector I. 
At the early stage of selection, when AM min  < 0

maxM  and the numerator in (18) is to be 
negative, selection by criterion (19) is intended for reducing the guaranteed shifts of 
the estimate IdⱠ . Next, one encounters a solution for which AM min  ≥ 0

maxM . For the 
given α < 1/2 it is still possible that αβ  < 1/2, but 

21
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50 /)(
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maxmin
. ≥













 −
Φ=β
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that is, the function )(. I50β  acquires here the sense of the power of test of size 0.5. 
Criterion (19) enables one to “capture” the greatest-power solution )(Iαβ  ≥ 1/2, if it 
exists, or to choose in the neighborhood the strongest solution for the significance 
level 0.5. In the latter case, run of the algorithm provides increase of the criterion 

)(. I50β  owing to growth of difference AM min  – 0
maxM  and decrease of variance ADmax . 

In doing so, the variance 0
maxD  usually decreases (because ADmax  ≥ 0

maxD  to within 
computational errors) and the numerator in (18) increases on the whole. Under 
reasonable choice of α, a solution with )(Iαβ  ≥ 1/2 will be determined, and 
optimization by the power criterion will be continued until the local optimum 
reached. 

Second modification of reduction algorithm concerns of the possibility of 
improving the solution by continuing the attachment from the point of local 
minimum. Modification consists in replacing step 3.3 of Algorithm 1 by a null 
operation and checking at step 3.5 the condition for attainment of the predefined 



number of attached regressors qmax. In one of three trial calculations, compulsory 
attachment resulted in a more powerful test. 

Third modification consists in increasing the rate of regressor selection by 
separating the subproblem of maximization of the variance D[ IdⱠ ] as an individual 
step. This subproblem lies in maximization of the convex function on the feasible 
polyhedron [1], so, we have sufficiently laborious problem of the concave 
programming [6, 7]. In practice, however, it turned out that the approximate solution 
by the simplex method usually coincides with the precise solution. Therefore, it is 
reasonable to select regressors by calculating the variances 0

maxD , ADmax  by means of 
simplex technique and then verify the calculations of the maximization criterion only 
for the points I, optimal in each of the checked neighborhoods. The checked 
neighborhoods must be surveyed with more precise calculation of the variances only 
if the differences are detected in the results of “fast” and “refined” calculations of 
criterion (19). Otherwise, the obtained solution will be certainly locally optimal since 
for the remaining solutions of the neighborhood the refined variances can only reduce 
criterion (19). 
 

5. Results of approval 
 

As was noted in [1], the new method of checking the hypotheses about the goal 
characteristic can be used in flying testing of the ballistic missiles where the main 
flight characteristic, variance of the hitting error (grouping of fire), must be checked 
to satisfy the desired performance. To approve the new method, it was developed a 
test observation model describing launching of the ballistic missile with a standard 
inertial guidance system — three-axes forced gyrostabilizer with string 
accelerometers mounted on the platform [8]. It is planned to use the data of the 
tracking measurements done by the “Mistrem” phase-angle-meter system [9]. The 
hitting error (range deviation) is proposed only due to the instrument errors of the 
gyrostabilizer. The state vector of the non-normalized model [3] has the following 

components: 1
*x — 2

*x  are the errors in the scale coefficients, respectively, of the x-

accelerometers and y-accelerometers; 3
*x — 5

*x  are angular rates of the constant 

platform drift; 6
*x — 8

*x  is the imbalance of the gyro units; 9
*x — 11

*x  are the errors of 

the initial gyro alignment; 12
*x — 14

*x  are the static stabilization errors; 15
*x — 17

*x  are 

the accelerometers’ “nonzeros” and 18
*x — 21

*x  are the alignment errors of the antenna 
field of the tracking radar. These components must be appropriately normalized when 
composing the vector x. 

The model includes the pretest variances Dapr[xi], 21,1=i , of the components of 
the state vector. The variances differ substantially (by the orders of magnitude); three 
variances (No. 8, 12, 13) are of dominating values. For the boundary values of the 
experiments, it was assumed that 
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The acceptance and rejection values of variance were as follows: 

DTTT = ∑
=

17

1
apr ][D

i
ix ;  DTTT = 㮰2DTTT, 㮰 = 1.25. 

A run of N = 7 firings was processed; the design matrix was formed from forty 
measurements of the velocity (correspondingly, n = 120). For the significance level 
of the required test, it was assumed that α = 0.25. 

Although this model is extremely simplified, it has the characteristic properties 
of the real model: the design matrix is multicollinear; the state vector is determined 
with great prior uncertainty1; the components of the state vector differ by orders of 
magnitude. 

The results of applying the modified algorithm to this model are plotted in Fig. 
2 as the test power vs. the number of attached regressors. The vertical lines refer to 
the cases where power was increased by replacing the attached regressor by a remote 
one (step 3.2 of Algorithm 1), the dashed lines refer to the cases where )(Iαβ  < 1/2. 
The most powerful test αβ  = 0.61 was obtained for q = 5 attached regressors. 

Let us compare the result presented with the results of the conventional method 
of checking by the sample of hits of the warhead. In the latter case, it is applicable the 
test of likelihood ratio, which consists in comparing the sampled variance of the error 
of hitting with the tolerance boundary [11]. For the significance level α, its power is 
as follows: 

                                                
1 Regularization of the information matrix by the parameters Dmax,i for estimating the state vector 
[10] does not secure the desired estimation accuracy. 
 



( )22
1,1

2Pr λχ>χ=β −α− N , 

where the random quantity χ2 has N − 1 degrees of freedom; 2
, fxχ  is the quantile of 

the level x of the χ2-distribution with f degrees of freedom. One can see that in the 
testing example β = 0.54, whereas the power β = 0.61 is attained if the sample 
volume is increased to N = 11. 

Volumes of the considered sample N = 7—11 are characteristic of the flight 
tests [12], and as one can see, the probability of accepting an off-grade system is 
rather high (of the order of 40%). Although cases are known where the flight tests 
failed to identify low missile accuracy [12], under the given funding to increase the 
sample volume is inadvisable from the point of view of missile system efficiency 
[13]. This fact is in agreement with the findings of the reliability theory that the error 
of the first or second kind should be optimized by efficiency criterion and that 
substantial error level of performance control of complex systems is possible even 
after optimization [14]. 

 
6. Conclusions 

 
The advantage of the new method of check of grouping of fire consists mostly 

in the possibility to check grouping in the required application conditions, rather than 
in higher test confidence. To check system properties in the required conditions it is 
sufficient to normalize the original model like it was recommended in [3], whereas by 
the sample of hitting errors grouping is estimated only for the test conditions. 
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