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1. Problem formulation and the general frame of method 

 
 We present the program of solving the following concave problem: 

                    ϕ(y) → max;                                                 (1) 
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     iy  ≤  yi  ≤ iy ,  i =1÷m.                                      (3) 

where  y ∈ Em; ϕ(y) is a continues convex function defined on Em ; iy   <  iy  and  

ki  ≤  0 for any i; parameters  A, iy  , iy ,  ki  are such that feasible set M, defined 

with restrictions (2—3), is not empty and not reduced to the point. 
 By the conversions: 

    x i = k iy i                                                (4) 

the problem (1—3) takes the following form investigated below: 

           f(x) ≡ ϕ(x i/k i  , .. . , x i/k i) → max;                         (5) 
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x  ≤  xi  ≤ ix ,  i=1÷m.                                             (7) 

 Any set in Em, defined by (6–7), is denoted M as before. The denotation’s 
meaning is made out by the context of derivation. 
 Let us consider following objects on the hyperplane: the feasible polyhedron 
M defined by restrictions (6- 7); the vertex of the polyhedron M; the flat cone; the 
flat simplex; the rib of a polyhedron (and the rib of a cone in that number). All this 
objects may be adduced in the strict terms, but we shell define them through iso-
morphous objects in the (m – 1)-dimensional space, obtained by exclusion of the 
variable: 
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 The presented description of the method is very rough; in particular, possi-



ble degeneration of vertices is not considered. The method is founded on the 
scheme of construction of the cutting simplices (Hoang Tuy, 1964). There will be 
under consideration coherently oriented (along the coordinate axes) hyperpar-
allelepipeds (HP) defined by the restrictions likewise (7). The solution is obtained 
with successive diminishing of the size of the HP, restricting the region for seek-
ing of maximum. The solution algorithm takes the generalized form as follows: 
 

ALGORITHM 1 
 

1. Make setting: Rec = –∞.  
2. Execute the cutting algorithm: 

2.1. With a simplex-method obtain the supposed maximum of the 
function f (some vertex xA of the feasible polyhedron M). If  f(xA) > Rec 
then make settings:  Rec = f(xA); xopt = xA. 

2.2. Fix the guiding vectors of the cone ribs, diverging from the point 
xA. Construct the hyperplane cutting on the cone some simplex for which 
the goal function has a maximum at the cone vertex. Test unexplored do-
main for one is not empty. If one is empty than the domain M has been ex-
plored: the point of maximum xopt has been searched. 

2.3. Construct HP having the shortest ribs and containing the unex-
plored region of feasible polyhedron. The constructed HP is given by lower 

i
x′  and upper ix ′  boundaries, i = 1÷m. 

3. Make settings: 
i

x  = 
i

x′ , ix  = ix ′ , i = 1÷m. 

4. Make (if necessary) the bisection of HP and do the recursive call (see lat-
er).  

5. Go to the item 2. 
 

Operation 2.3, resulting in HP of smaller size, later is named the contraction 
of the initial HP. Operations 2.3 and 3 modify the boundaries in the inequalities 
(7) to get the unexplored part of the feasible polyhedron. The step 4 prevents the 
recycling if the contraction would slow down. With proper input data this proce-
dures are not activated. The step 4 includes:  

4.1. The monitoring of contraction speed. On the slow down process the fol-
lowing points 4.2- 4.5 are carried out else going to the point 5 of algorithm 1.  

4.2. The bisection of HP: the special choosing of hyperplane No. i defined 
with the equation: 
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4.3. The choice of HP’s half and solving the problem (5- 7) for chosen half 
by the recursive call of algorithm 1. The optimization is resulted in the variable 
Rec1 and vector 1optx . 

4.4. If  Rec1 > Rec then set Rec = Rec1, optx  = 1
optx . 

4.5. The boundaries 
i

x , ix  are modified to specify another half for further 

exploration. 
 
Obviously, after the first recursion it is possible the repeat of slowdown of 

contraction, which causes the bisection etc. The recursions are not deep through 
adjustments of algorithm; therefore process is quick, unrelated to the problem’s 
dimension m. 
 To solve the problem (1- 3) one has to set up: 

the program module for the function ϕ(y) calculation;  
the parameters A, iy , iy , ki; 

 the tuning parameters ∆1, ∆ϕ0, named permissible errors for the argument 
and the function respectively, which satisfy to following demands: 

1) almost at the whole feasible set the derivatives 
iy∂

∂ϕ
 is calculated as the ra-

tio of increments 1
iy∆

ϕ∆
 with a small error, where  

1
iy∆ = ∆1( iy  −  iy );                                              (8) 

2) for any generated vertex y0 the component 0
iy  belonging to the gap      

( iy  + 1
iy∆ , iy  -  

1
iy∆ )  can’t coincide with the boundaries iy , iy  on the chance of 

absolutely precise computations.  
3) for the permissible optimization error ∆ϕmax next inequality takes place: 

∆ϕmax ≤  ∆ϕ0  +  max
,y y∆

 |∆ϕ |, 

where ∆ϕ  is the finite increment of the function ϕ; maximum is searched for any 

vector y ∈ Μ  and vector ∆y, such that  |∆yi| ≤ 1
iy∆ , i = 1÷m. 

 It is not recommended to take the considered parameters excessively small, 
for the latter can slow down the process. Setting this parameters to zero can pro-
duce abnormal termination; 
 the tuning parameter ∆2, which means permissible relative error of argument 
optimization during calculations of the bounds of the truncated HP. Recommended 
values of this one are ∆2 = 0.001 ÷0.00001. Change this value only if some warn-



ing messages appeared one after the other, or program terminated abnormally. 
  

2. The installation instructions and program interface 
 
 The package of programs was elaborated under MS-DOS. The package can 
be installed into the directory with any name: you have to copy there SFX-archives 
“conc-sfx.exe”, then unpack one. You’ll get following directories: 

DATA – contains the input and output files;  
LOAD – created to room the resulting optimization program “concave.exe”; 
OM – serves to room the objective modules and libraries for linking of the 

resulting program, as well to include the linkage editor service, in particular, the 
command files "BAT"; 

SSM – serves to room the source-statement modules for the function cal-
culation. 

After unpacking the enumerated directories contains the set of files, related 
to the testing task, described below. Some data of this files, in particular, the op-
timization parameters from the file “sysin.cnc”, have to be used to solve user’s 
task. 
 The program “concave.exe” solves the problem (1- 3) and interact with the 
user by means of  the input file “sysin.cnc”, the output file “result.cnc”, the 
process monitoring on the screen, the objective module of the calculation of the 
function ϕ(y). The input and output files are written in the ASCII-format. The se-
parating agents are blank spaces (one or more) or <CR>. Comment lines may be 
used in the files. Non-normalized parameters, which were denoted above “y”, are 
denoted in comments like “X”. 
 The structure of the file “sysin.cnc”: 
 1-st line is a comment; 
 2-nd line is the problem dimension m; 
 3-rd line is a comment (the table’s heading); 
 following m lines have the form “i   iy   iy ” and define the boundaries for 

the coordinates yi;  
 (m + 4)-th line is a comment (the table’s heading); 
 following m lines have the form “i    ki ” and define the condition (2); 
 from the (2m + 5)-th line follow: the comment, the value A, the comment, 
the value ∆1, the comment, the value ∆ϕ0, the comment, the value ∆2 — all units 
are separated with <CR>. 

The structure of the file “result.cnc”: 
 the beginning of the file is a list of input data with comments, then the line 
“THE RESULT OF OPTIMIZATION:”, then the table with coordinates of the op-
timal vector y, after that the optimal value of the function ϕ  (the string 
“FUNC.VALUE = <value>”) and the algorithm setup parameters. The later para-



meters are: the summary number of recursions (SUM OF RECURSIONS = <val-
ue>); the maximum depth-level of recursions (DEPTH OF RECURSION = <val-
ue>); the summary number of failures while constructing the cones from the cho-
sen vertices (SUM OF SUPPORT CONSTR.FAILURES = <value >), the timing 
of start and finish.  
 The optimization process is monitored on the screen. At the beginning all 
input data from “sysin.cnc” are echoed, then in the first (upper) line is displayed 
the percentage of the explored feasible domain and maximum criterion’s value 
reached to the current time. Below there is the scale and the indicator of the cur-
rent recursion level (the greatest depth-level is 40). After that the “least” of input 
data follow. On the abnormal operations the corresponding statements is appearing 
by scrolling under the scale. The number of failures while constructing the cone, if 
not zero one, is printed at the first line by the right. 
 If current recursion level is greater, in average, then 15÷20, then computa-
tions will be excessively long, and process-tuning parameters has to be corrected. 
The program can’t be interrupted from the console and therefore it is recommend-
ed to start one under WINDOWS. 
 The screen is cleared before termination and computational results are dis-
played just like they placed into the file “result.cnc”. 
 

3. Function programming, linking and testing 
 
 The objective modules in the directory OM together with command files 
make useful the procedures of calculation of the function ϕ(y) almost in any pro-
gramming language under MS-DOS (it is recommended compilers by Microsoft 
corp. produced in 1985-1990). The directory SSM contains the source-statements 
modules of calculation of the testing function like follows: 
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in the languages FORTRAN77 v3.31 (1985) and QuickBASIC v4.5 (1988). Given 
files are presented as the samples of programming of user’s functions. In the pro-
gram under consideration the external reference to the procedure-function is de-
fined as FUNC, the returning value is of float type, 4 bytes long. To transfer para-
meters into the subroutine FUNC it is applicable the “subroutine-link” being 
named RELAY, included into the main objective module “concave.obj”. Given 
procedure-function is called from the user’s procedure FUNC at the beginning of 
runtime and returns with 4 bytes floating point format: at the first call -  the di-
mension m, at the following m calls -  the coordinates yi, i=1÷m. Such the unwiel-
dy transference of parameters makes procedure FUNC compatible with supplied 
objective modules indifferently to the language of programming of procedure 



FUNC. After calculation of the function’s value the return into the parental mod-
ule is made in common technique -  see the examples “func-f.for” (written in 
FORTRAN) and “func-b.bas” (written in QuickBASIC). To compile the source 
modules “func-b.bas” and “func-f.for” the default options for keys and libraries 
are applicable. The compiled modules have been placed into the directory OM 
(“func-b.obj” and “func-f.obj” correspondingly) and may be used for training in 
the assembling technique. Linking of the objective module “func-b.obj” can be 
done with command file “link-bas.bat”, started from the current directory OM. 
The result of linkage is the file “concave.exe” that uses a coprocessor. Linking of 
the module “func-f.obj” can be done with starting either the file “link-f-e.bat” to 
create the file “concave.exe” that uses simulation of coprocessor 8087, or the file 
“link-f-m.bat” to create the similar file that uses a real coprocessor. All modules 
and libraries required for linkage have been placed into the directory OM. The re-
sulting file “concave.exe” you have to displace into the directory LOAD and it’s 
ready to start. (From this directory you can remove the demo-program with proce-
dure FUNC compiled from file “func-b.bas”). If you replace in the OM the demo- 
objective module of computation of the function ϕ(y) by yours one (saving, of 
course, names func-b.obj or func-f.obj) then by starting corresponding command 
files you can create the wanted optimization program. However, you have to util-
ize one of above-mentioned languages with a pointed version, otherwise you have 
to use another libraries. To do correct original linkage it is presented below a list 
of files in the directory OM and operation instructions for the program “link.exe”. 
 Subdirectory OM includes: 
 objective modules of the elaborated program in QuickBASIC v4.5: “con-
cave.obj” and “service.obj”;  

 “link-bas.bat” that is the command file of linking of “clear” BASIC-
programs; 

“link-f-e.bat”, “link-f-m.bat” that are the files of linking of mixed-languages 
programs using FORTRAN-procedure;  
 “func-b.obj” and “func-f.obj” that are objective modules of computation of 
testing function  (see above).  
 In the starting command of linker you have to use the keys  /NOE  (ignore 
extensions of libraries dictionaries) and  /NOD  (ignore default libraries). Link to-
gether modules concave.obj + service.obj + noem.obj + {procedure-function with 
entry point FUNC}, include  “bcom45.lib”  and least number of standard libraries 
to resolve the references of user’s function, moreover a good deal of references 
(may be all) are resolved with a library  “bcom45.lib”. 
 
 Remark: in the freeware version you are limited with dimensions m ≤ 20. 
 
 The theory of method is in the article: 
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